GPU 模式讲座 1 的笔记
分析器
计算机性能取决于时间和内存的权衡。由于计算设备比较昂贵,所以大多数时候,时间是首先要关心的。
为什么要使用分析器?
- cuda 是异步的,因此无法使用 python 时间模块
- 分析器更加强大
工具
共有三个分析器:
- autograd 分析器:数值
- pytorch 分析器:视觉
- nvidia nsight 计算
autograd 分析器利用 torch.cuda.event() 来测量性能。
pytorch profiler 利用 profiler 上下文管理器 torch.profiler 中的 profile() 方法来分析性能。
您可以将结果导出为 .json 文件并将其上传到 chrome://tracing/ 进行可视化。
演示
课程提供了一个简单的程序来展示如何使用autograd profiler来分析三种平方运算方法的性能:
- 通过 torch.square()
- 由 ** 操作员
- 由 * 操作员
def time_pytorch_function(func, input): # cuda is async so can't use python time module start = torch.cuda.event(enable_timing=true) end = torch.cuda.event(enable_timing=true) # warmup for _ in range(5): func(input) start.record() func(input) end.record() torch.cuda.synchronize() return start.elapsed_time(end) time_pytorch_function(torch.square, b) time_pytorch_function(square_2, b) time_pytorch_function(square_3, b)
下面的结果是在 nvidia t4 gpu 上完成的。
profiling torch.square: self cpu time total: 10.577ms self cuda time total: 3.266ms profiling a * a: self cpu time total: 5.417ms self cuda time total: 3.276ms profiling a ** 2: self cpu time total: 6.183ms self cuda time total: 3.274ms
事实证明:
- cuda 运算速度比 cpu 更快。
- * 运算符执行的是 aten::multiply 操作,而不是 aten::pow,并且前者更快。这可能是因为乘法比 pow 使用得更多,并且许多开发人员花时间对其进行优化。
- cuda 上的性能差异很小。考虑到 cpu 时间,torch.square 是最慢的操作
- aten::square 是对 aten::pow 的调用
- 所有三种方法都启动了一个名为native::vectorized_elementwise_kernel
在 pytorch 中集成 cuda 内核
有几种方法可以做到这一点:
- 使用torch.utils.cpp_extendsion中的load_inline
- 使用 numba,它是一个编译器,可将经过修饰的 python 函数编译为在 cpu 和 gpu 上运行的机器代码
- 使用 triton
我们可以使用torch.utils.cpp_extendsion中的load_inline通过load_inline(name,cpp_sources,cuda_sources,functions,with_cuda,build_directory)将cuda内核加载为pytorch扩展。
from torch.utils.cpp_extension import load_inline square_matrix_extension = load_inline( name='square_matrix_extension', cpp_sources=cpp_source, cuda_sources=cuda_source, functions=['square_matrix'], with_cuda=true, extra_cuda_cflags=["-o2"], build_directory='./load_inline_cuda', # extra_cuda_cflags=['--expt-relaxed-constexpr'] ) a = torch.tensor([[1., 2., 3.], [4., 5., 6.]], device='cuda') print(square_matrix_extension.square_matrix(a))
动手实践
对均值操作使用 autograd 分析器
使用 autograd profiler 时,请记住:
- 录制前预热gpu,使gpu进入稳定状态
- 平均多次运行以获得更可靠的结果
import torch # method 1: use `torch.mean()` def mean_all_by_torch(input_tensor): return torch.mean(input_tensor) # method 2: use `mean()` of the tensor def mean_all_by_tensor(input_tensor): return input_tensor.mean() # method 3: use `torch.sum()` and `tensor.numel()` def mean_all_by_combination(input_tensor): return torch.sum(input_tensor) / input_tensor.numel() def time_pytorch_function(func, input_tensor, warmup=5, runs=100): # warmup for _ in range(warmup): func(input_tensor) times = [] start = torch.cuda.event(enable_timing=true) end = torch.cuda.event(enable_timing=true) for _ in range(runs): start.record() func(input_tensor) end.record() torch.cuda.synchronize() times.append(start.elapsed_time(end)) return sum(times) / len(times) input_tensor = torch.randn(10000, 10000).cuda() print("torch.mean() time:", time_pytorch_function(mean_all_by_torch, input_tensor)) print("tensor.mean() time:", time_pytorch_function(mean_all_by_tensor, input_tensor)) print("manual mean time:", time_pytorch_function(mean_all_by_combination, input_tensor)) with torch.profiler.profile() as prof: mean_all_by_torch(input_tensor) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) with torch.profiler.profile() as prof: mean_all_by_tensor(input_tensor) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) with torch.profiler.profile() as prof: mean_all_by_combination(input_tensor) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
使用 pytorch 分析器进行均值操作
import torch from torch.profiler import profile, profileractivity with profile(activities=[profileractivity.cpu, profileractivity.cuda]) as prof: for _ in range(10): mean_tensor = torch.mean(torch.randn(10000, 10000).cuda()) prof.export_chrome_trace("mean_trace.json")
为 torch.mean() 实现 triton 代码
import triton import triton.language as tl import torch @triton.jit def mean_kernel( x_ptr, # pointer to input tensor output_ptr, # pointer to output tensor n_elements, # total number of elements BLOCK_SIZE: tl.constexpr, # number of elements per block ): pid = tl.program_id(0) block_start = pid * BLOCK_SIZE block_end = tl.minimum(block_start + BLOCK_SIZE, n_elements) acc = 0.0 for idx in range(block_start, block_end): x = tl.load(x_ptr + idx) acc += x block_mean = acc / n_elements # Store result tl.store(output_ptr + pid, block_mean) # Wrapper function def triton_mean(x: torch.Tensor) -> torch.Tensor: x = x.contiguous().view(-1) n_elements = x.numel() BLOCK_SIZE = 1024 grid = (triton.cdiv(n_elements, BLOCK_SIZE),) output = torch.empty(grid[0], device=x.device, dtype=x.dtype) mean_kernel[grid]( x_ptr=x, output_ptr=output, n_elements=n_elements, BLOCK_SIZE=BLOCK_SIZE, ) return output.sum() # Example usage: if __name__ == "__main__": # Create test tensor x = torch.randn(1000000, device='cuda') # Compare results torch_mean = torch.mean(x) triton_mean_result = triton_mean(x) print(f"PyTorch mean: {torch_mean}") print(f"Triton mean: {triton_mean_result}") print(f"Difference: {abs(torch_mean - triton_mean_result)}")
参考
- gpu 模式讲座 - github
- 活动 - pytorch
- pytorch 分析器
- nvidia nsight 计算
- torch.utils.cpp_extension.load_inline
- 海卫一
以上就是GPU 模式讲座 1 的笔记的详细内容,更多请关注硕下网其它相关文章!