Java怎么用位运算实现乘法运算
十进制相乘
例如,26 * 15
,在进行乘法操作时,我们一般这样算,先用5
乘以6
得到30
,把0
写下把3
记在一边,再用5
乘以2
得到10
再加上之前的3
写在下面,得到130
;计算完5
再计算1
分别乘以6
和2
把得到的结果26
记在下面,然后把130
和26
相加(有错位)得到390
。
二进制相乘
看完了十进制的相乘,再来看下二进制的相乘,基本原理是一样的,也是以十字相乘法为例,计算 5 * 7
。
5
的二进制为101
,7
的二进制为111
,来看下二进制的十字相乘法。
可以看到二进制为101
和二进制111
用传统的方式来计算,得到的结果为100011
,而二进制100011
对应的十进制为35
。
所以说,在计算的过程中,十进制和二进制的计算方式是一样的,当然这里就不进行举例和证明了。
思路分析
既然计算过程有了,那么怎么样用代码来实现呢?
我们再来看下上图中二进制的计算过程:
先用二进制
111
的最后一位1
乘上101
得到101
。再用二进制
111
的倒数第2位1
乘上101
得到101
。再用二进制
111
的倒数第3位1
乘上101
得到101
。得到的三个
101
进行二进制相加,得到100011
。
注意,第2
步和第3
步得到的结果101
都往前挪了一位,相当于1010
和10100
,也就是最后相加的计算为:10100 + 1010 + 101 = 100011
。
再来看得到最终相加的计算10100 + 1010 + 101 = 100011
,也就是只要我们找到如何把数据转换为几位数的相加就可以了,因为之前已经实现了如何用位运算实现加法操作。
这三个数101
、1010
、10100
的数量刚好与二进制111
的个数相同,也就是二进制(上图下面那个乘数111
)有几位就会产生几个数相加,如果是与11111
相乘就会产生5
个数相加。
再来看数据之前的关系:
第一次相乘结果:
101 = 101 + 0
第二次相乘结果:
1111 = 101 < 1 + 101 = 1010 + 101
第三次相乘结果:
100011 = 101 < 2 + 1111 = 10100 + 1010 + 101
从这里我们可以看到,每计算一次,101
只需要向左移一次再加上上一次的计算结果就可以了。
那么,怎么知道要左移多少次呢?从这里例子中看,111
每次计算后,向右移动一次,101
也跟着向左移动一次,直到111
只剩最后一位,则停止计算就好了。
代码实现
根据上面的思路,来实现一下代码:
// 用位运算实现加法 public static int add(int a, int b) { int sum = 0; while (b != 0) { sum = a ^ b; b = (a & b) << 1; a = sum; } return sum; } // 用位运算实现减法 public static int multi(int a, int b) { int res = 0; while (b != 0) { if ((b & 1) != 0) { res = add(res, a); } a <<= 1; b >>>= 1; } return res; }
运行一下代码,看下结果:
可以看到计算是正确的,而且还支持负数。
以上就是Java怎么用位运算实现乘法运算的详细内容,更多请关注其它相关文章!