基于PHP实现堆排序原理

基于PHP实现堆排序原理

堆(heap)是计算机科学中一类特殊的数据结构的统称,通常是一个可以被看做一棵树的数组对象。

堆{k1,k2,ki,…,kn} (ki <= k2i,ki <= k2i+1)|(ki >= k2i,ki >= k2i+1), (i = 1,2,3,4...n/2)

关于堆:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树(下面)。
  • 将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

完全二叉树

说到堆排序,就不能不提完全二叉树,这些基本概念在网上到处都是,我摘了个最简单的。。

完全二叉树:除最后一层外,每一层上的节点数均达到最大值;在最后一层上只缺少右边的若干结点。

我自己总结认为,正是因为有下面两个特点,

  • 只允许最后一层有空缺结点且空缺在右边,即叶子结点只能在层次最大的两层上出现(存储方式的规则性);
  • 若i>1,tree的双亲为tree[i p 2](其父子结点值的规律性);

才使得其进行排序非常方便。

堆排序

堆排序求升序用大顶堆,求降序用小顶堆。

本例用求降序的小顶堆来解析。

堆排序步骤如下:

1、我们将数据(49、38、65、97、76、13、27、50)建立一个数组$arr;

2、用数组$arr建立一个小顶堆(主要步骤,会在代码注释里解释,下图是用一个数组建立小顶堆的过程);

3、将堆的根(最小的元素)与最后一个叶子交换,并将堆长度减一,跳到第二步;

4、重复2-3步,直到堆中只有一个结点,排序完成。

堆排序的PHP实现


//因为是数组,下标从0开始,所以,下标为n根结点的左子结点为2n+1,右子结点为2n+2; 
//初始化值,建立初始堆
$arr=array(49,38,65,97,76,13,27,50);
$arrSize=count($arr);

//将第一次排序抽出来,因为最后一次排序不需要再交换值了。
buildHeap($arr,$arrSize);

for($i=$arrSize-1;$i>0;$i--){
  swap($arr,$i,0);
  $arrSize--;
  buildHeap($arr,$arrSize);  
}

//用数组建立最小堆
function buildHeap(&$arr,$arrSize){
  //计算出最开始的下标$index,如图,为数字"97"所在位置,比较每一个子树的父结点和子结点,将最小值存入父结点中
  //从$index处对一个树进行循环比较,形成最小堆
  for($index=intval($arrSize/2)-1; $index>=0; $index--){
    //如果有左节点,将其下标存进最小值$min
    if($index*2+1<$arrSize){
      $min=$index*2+1;
      //如果有右子结点,比较左右结点的大小,如果右子结点更小,将其结点的下标记录进最小值$min
      if($index*2+2<$arrSize){
        if($arr[$index*2+2]<$arr[$min]){
          $min=$index*2+2;
        }
      }
      //将子结点中较小的和父结点比较,若子结点较小,与父结点交换位置,同时更新较小
      if($arr[$min]<$arr[$index]){
        swap($arr,$min,$index);
      }  
    }
  }
}

//此函数用来交换下数组$arr中下标为$one和$another的数据
function swap(&$arr,$one,$another){
  $tmp=$arr[$one];
  $arr[$one]=$arr[$another];
  $arr[$another]=$tmp;
}

下面是排序的最终结果:

堆用来进行全排序,时间复杂度是O(nlogn)

而快排用来全排序,平均时间复杂度也是O(nlogn)

但堆排序可以用来求 TopK 时,堆的时间复杂度为O(Klog2(n),因为它只需要进行 K 轮排序即可。

推荐教程:《PHP

以上就是基于PHP实现堆排序原理的详细内容,更多请关注其它相关文章!